3.2.63 \(\int \cos ^4(c+d x) \sqrt {a+a \sec (c+d x)} (A+C \sec ^2(c+d x)) \, dx\) [163]

3.2.63.1 Optimal result
3.2.63.2 Mathematica [C] (verified)
3.2.63.3 Rubi [A] (verified)
3.2.63.4 Maple [B] (verified)
3.2.63.5 Fricas [A] (verification not implemented)
3.2.63.6 Sympy [F(-1)]
3.2.63.7 Maxima [B] (verification not implemented)
3.2.63.8 Giac [F]
3.2.63.9 Mupad [F(-1)]

3.2.63.1 Optimal result

Integrand size = 35, antiderivative size = 196 \[ \int \cos ^4(c+d x) \sqrt {a+a \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {\sqrt {a} (35 A+48 C) \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{64 d}+\frac {a (35 A+48 C) \sin (c+d x)}{64 d \sqrt {a+a \sec (c+d x)}}+\frac {a (35 A+48 C) \cos (c+d x) \sin (c+d x)}{96 d \sqrt {a+a \sec (c+d x)}}+\frac {a A \cos ^2(c+d x) \sin (c+d x)}{24 d \sqrt {a+a \sec (c+d x)}}+\frac {A \cos ^3(c+d x) \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{4 d} \]

output
1/64*(35*A+48*C)*arctan(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))*a^(1/2) 
/d+1/64*a*(35*A+48*C)*sin(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)+1/96*a*(35*A+48* 
C)*cos(d*x+c)*sin(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)+1/24*a*A*cos(d*x+c)^2*si 
n(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)+1/4*A*cos(d*x+c)^3*sin(d*x+c)*(a+a*sec(d 
*x+c))^(1/2)/d
 
3.2.63.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.32 (sec) , antiderivative size = 70, normalized size of antiderivative = 0.36 \[ \int \cos ^4(c+d x) \sqrt {a+a \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {2 \left (C \operatorname {Hypergeometric2F1}\left (\frac {1}{2},3,\frac {3}{2},1-\sec (c+d x)\right )+A \operatorname {Hypergeometric2F1}\left (\frac {1}{2},5,\frac {3}{2},1-\sec (c+d x)\right )\right ) \sqrt {a (1+\sec (c+d x))} \tan \left (\frac {1}{2} (c+d x)\right )}{d} \]

input
Integrate[Cos[c + d*x]^4*Sqrt[a + a*Sec[c + d*x]]*(A + C*Sec[c + d*x]^2),x 
]
 
output
(2*(C*Hypergeometric2F1[1/2, 3, 3/2, 1 - Sec[c + d*x]] + A*Hypergeometric2 
F1[1/2, 5, 3/2, 1 - Sec[c + d*x]])*Sqrt[a*(1 + Sec[c + d*x])]*Tan[(c + d*x 
)/2])/d
 
3.2.63.3 Rubi [A] (verified)

Time = 1.04 (sec) , antiderivative size = 197, normalized size of antiderivative = 1.01, number of steps used = 13, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.343, Rules used = {3042, 4575, 27, 3042, 4503, 3042, 4292, 3042, 4292, 3042, 4261, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cos ^4(c+d x) \sqrt {a \sec (c+d x)+a} \left (A+C \sec ^2(c+d x)\right ) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {a \csc \left (c+d x+\frac {\pi }{2}\right )+a} \left (A+C \csc \left (c+d x+\frac {\pi }{2}\right )^2\right )}{\csc \left (c+d x+\frac {\pi }{2}\right )^4}dx\)

\(\Big \downarrow \) 4575

\(\displaystyle \frac {\int \frac {1}{2} \cos ^3(c+d x) \sqrt {\sec (c+d x) a+a} (a A+a (5 A+8 C) \sec (c+d x))dx}{4 a}+\frac {A \sin (c+d x) \cos ^3(c+d x) \sqrt {a \sec (c+d x)+a}}{4 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \cos ^3(c+d x) \sqrt {\sec (c+d x) a+a} (a A+a (5 A+8 C) \sec (c+d x))dx}{8 a}+\frac {A \sin (c+d x) \cos ^3(c+d x) \sqrt {a \sec (c+d x)+a}}{4 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a} \left (a A+a (5 A+8 C) \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\csc \left (c+d x+\frac {\pi }{2}\right )^3}dx}{8 a}+\frac {A \sin (c+d x) \cos ^3(c+d x) \sqrt {a \sec (c+d x)+a}}{4 d}\)

\(\Big \downarrow \) 4503

\(\displaystyle \frac {\frac {1}{6} a (35 A+48 C) \int \cos ^2(c+d x) \sqrt {\sec (c+d x) a+a}dx+\frac {a^2 A \sin (c+d x) \cos ^2(c+d x)}{3 d \sqrt {a \sec (c+d x)+a}}}{8 a}+\frac {A \sin (c+d x) \cos ^3(c+d x) \sqrt {a \sec (c+d x)+a}}{4 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{6} a (35 A+48 C) \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\csc \left (c+d x+\frac {\pi }{2}\right )^2}dx+\frac {a^2 A \sin (c+d x) \cos ^2(c+d x)}{3 d \sqrt {a \sec (c+d x)+a}}}{8 a}+\frac {A \sin (c+d x) \cos ^3(c+d x) \sqrt {a \sec (c+d x)+a}}{4 d}\)

\(\Big \downarrow \) 4292

\(\displaystyle \frac {\frac {1}{6} a (35 A+48 C) \left (\frac {3}{4} \int \cos (c+d x) \sqrt {\sec (c+d x) a+a}dx+\frac {a \sin (c+d x) \cos (c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a^2 A \sin (c+d x) \cos ^2(c+d x)}{3 d \sqrt {a \sec (c+d x)+a}}}{8 a}+\frac {A \sin (c+d x) \cos ^3(c+d x) \sqrt {a \sec (c+d x)+a}}{4 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{6} a (35 A+48 C) \left (\frac {3}{4} \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\csc \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {a \sin (c+d x) \cos (c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a^2 A \sin (c+d x) \cos ^2(c+d x)}{3 d \sqrt {a \sec (c+d x)+a}}}{8 a}+\frac {A \sin (c+d x) \cos ^3(c+d x) \sqrt {a \sec (c+d x)+a}}{4 d}\)

\(\Big \downarrow \) 4292

\(\displaystyle \frac {\frac {1}{6} a (35 A+48 C) \left (\frac {3}{4} \left (\frac {1}{2} \int \sqrt {\sec (c+d x) a+a}dx+\frac {a \sin (c+d x)}{d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a \sin (c+d x) \cos (c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a^2 A \sin (c+d x) \cos ^2(c+d x)}{3 d \sqrt {a \sec (c+d x)+a}}}{8 a}+\frac {A \sin (c+d x) \cos ^3(c+d x) \sqrt {a \sec (c+d x)+a}}{4 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{6} a (35 A+48 C) \left (\frac {3}{4} \left (\frac {1}{2} \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx+\frac {a \sin (c+d x)}{d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a \sin (c+d x) \cos (c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a^2 A \sin (c+d x) \cos ^2(c+d x)}{3 d \sqrt {a \sec (c+d x)+a}}}{8 a}+\frac {A \sin (c+d x) \cos ^3(c+d x) \sqrt {a \sec (c+d x)+a}}{4 d}\)

\(\Big \downarrow \) 4261

\(\displaystyle \frac {\frac {1}{6} a (35 A+48 C) \left (\frac {3}{4} \left (\frac {a \sin (c+d x)}{d \sqrt {a \sec (c+d x)+a}}-\frac {a \int \frac {1}{\frac {a^2 \tan ^2(c+d x)}{\sec (c+d x) a+a}+a}d\left (-\frac {a \tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}\right )+\frac {a \sin (c+d x) \cos (c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a^2 A \sin (c+d x) \cos ^2(c+d x)}{3 d \sqrt {a \sec (c+d x)+a}}}{8 a}+\frac {A \sin (c+d x) \cos ^3(c+d x) \sqrt {a \sec (c+d x)+a}}{4 d}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {\frac {a^2 A \sin (c+d x) \cos ^2(c+d x)}{3 d \sqrt {a \sec (c+d x)+a}}+\frac {1}{6} a (35 A+48 C) \left (\frac {3}{4} \left (\frac {\sqrt {a} \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}+\frac {a \sin (c+d x)}{d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a \sin (c+d x) \cos (c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\right )}{8 a}+\frac {A \sin (c+d x) \cos ^3(c+d x) \sqrt {a \sec (c+d x)+a}}{4 d}\)

input
Int[Cos[c + d*x]^4*Sqrt[a + a*Sec[c + d*x]]*(A + C*Sec[c + d*x]^2),x]
 
output
(A*Cos[c + d*x]^3*Sqrt[a + a*Sec[c + d*x]]*Sin[c + d*x])/(4*d) + ((a^2*A*C 
os[c + d*x]^2*Sin[c + d*x])/(3*d*Sqrt[a + a*Sec[c + d*x]]) + (a*(35*A + 48 
*C)*((a*Cos[c + d*x]*Sin[c + d*x])/(2*d*Sqrt[a + a*Sec[c + d*x]]) + (3*((S 
qrt[a]*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/d + (a*Sin 
[c + d*x])/(d*Sqrt[a + a*Sec[c + d*x]])))/4))/6)/(8*a)
 

3.2.63.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4261
Int[Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(b/d) 
  Subst[Int[1/(a + x^2), x], x, b*(Cot[c + d*x]/Sqrt[a + b*Csc[c + d*x]])], 
 x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]
 

rule 4292
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
 + (a_)], x_Symbol] :> Simp[a*Cot[e + f*x]*((d*Csc[e + f*x])^n/(f*n*Sqrt[a 
+ b*Csc[e + f*x]])), x] + Simp[a*((2*n + 1)/(2*b*d*n))   Int[Sqrt[a + b*Csc 
[e + f*x]]*(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f}, x] && 
 EqQ[a^2 - b^2, 0] && LtQ[n, -2^(-1)] && IntegerQ[2*n]
 

rule 4503
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
 + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[A*b^2*Co 
t[e + f*x]*((d*Csc[e + f*x])^n/(a*f*n*Sqrt[a + b*Csc[e + f*x]])), x] + Simp 
[(A*b*(2*n + 1) + 2*a*B*n)/(2*a*d*n)   Int[Sqrt[a + b*Csc[e + f*x]]*(d*Csc[ 
e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a 
*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[A*b*(2*n + 1) + 2*a*B*n, 0] && LtQ[n, 0]
 

rule 4575
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_. 
))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[A*Co 
t[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*n)), x] - Simp[1/( 
b*d*n)   Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[a*A*m - b 
*(A*(m + n + 1) + C*n)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, 
 C, m}, x] && EqQ[a^2 - b^2, 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -2^(-1)] || 
 EqQ[m + n + 1, 0])
 
3.2.63.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(382\) vs. \(2(172)=344\).

Time = 0.59 (sec) , antiderivative size = 383, normalized size of antiderivative = 1.95

method result size
default \(\frac {\left (48 A \cos \left (d x +c \right )^{4} \sin \left (d x +c \right )+56 A \cos \left (d x +c \right )^{3} \sin \left (d x +c \right )+105 A \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right )+70 A \cos \left (d x +c \right )^{2} \sin \left (d x +c \right )+144 C \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right )+96 C \cos \left (d x +c \right )^{2} \sin \left (d x +c \right )+105 A \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right )+105 A \cos \left (d x +c \right ) \sin \left (d x +c \right )+144 C \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right )+144 C \cos \left (d x +c \right ) \sin \left (d x +c \right )\right ) \sqrt {a \left (1+\sec \left (d x +c \right )\right )}}{192 d \left (\cos \left (d x +c \right )+1\right )}\) \(383\)

input
int(cos(d*x+c)^4*(A+C*sec(d*x+c)^2)*(a+a*sec(d*x+c))^(1/2),x,method=_RETUR 
NVERBOSE)
 
output
1/192/d*(48*A*cos(d*x+c)^4*sin(d*x+c)+56*A*cos(d*x+c)^3*sin(d*x+c)+105*A*( 
-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctanh(sin(d*x+c)/(cos(d*x+c)+1)/(-cos( 
d*x+c)/(cos(d*x+c)+1))^(1/2))*cos(d*x+c)+70*A*cos(d*x+c)^2*sin(d*x+c)+144* 
C*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctanh(sin(d*x+c)/(cos(d*x+c)+1)/(-c 
os(d*x+c)/(cos(d*x+c)+1))^(1/2))*cos(d*x+c)+96*C*cos(d*x+c)^2*sin(d*x+c)+1 
05*A*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctanh(sin(d*x+c)/(cos(d*x+c)+1)/ 
(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2))+105*A*cos(d*x+c)*sin(d*x+c)+144*C*(-co 
s(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctanh(sin(d*x+c)/(cos(d*x+c)+1)/(-cos(d*x 
+c)/(cos(d*x+c)+1))^(1/2))+144*C*cos(d*x+c)*sin(d*x+c))*(a*(1+sec(d*x+c))) 
^(1/2)/(cos(d*x+c)+1)
 
3.2.63.5 Fricas [A] (verification not implemented)

Time = 0.33 (sec) , antiderivative size = 368, normalized size of antiderivative = 1.88 \[ \int \cos ^4(c+d x) \sqrt {a+a \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \, dx=\left [\frac {3 \, {\left ({\left (35 \, A + 48 \, C\right )} \cos \left (d x + c\right ) + 35 \, A + 48 \, C\right )} \sqrt {-a} \log \left (\frac {2 \, a \cos \left (d x + c\right )^{2} - 2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right ) + 1}\right ) + 2 \, {\left (48 \, A \cos \left (d x + c\right )^{4} + 56 \, A \cos \left (d x + c\right )^{3} + 2 \, {\left (35 \, A + 48 \, C\right )} \cos \left (d x + c\right )^{2} + 3 \, {\left (35 \, A + 48 \, C\right )} \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{384 \, {\left (d \cos \left (d x + c\right ) + d\right )}}, -\frac {3 \, {\left ({\left (35 \, A + 48 \, C\right )} \cos \left (d x + c\right ) + 35 \, A + 48 \, C\right )} \sqrt {a} \arctan \left (\frac {\sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) - {\left (48 \, A \cos \left (d x + c\right )^{4} + 56 \, A \cos \left (d x + c\right )^{3} + 2 \, {\left (35 \, A + 48 \, C\right )} \cos \left (d x + c\right )^{2} + 3 \, {\left (35 \, A + 48 \, C\right )} \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{192 \, {\left (d \cos \left (d x + c\right ) + d\right )}}\right ] \]

input
integrate(cos(d*x+c)^4*(A+C*sec(d*x+c)^2)*(a+a*sec(d*x+c))^(1/2),x, algori 
thm="fricas")
 
output
[1/384*(3*((35*A + 48*C)*cos(d*x + c) + 35*A + 48*C)*sqrt(-a)*log((2*a*cos 
(d*x + c)^2 - 2*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + 
 c)*sin(d*x + c) + a*cos(d*x + c) - a)/(cos(d*x + c) + 1)) + 2*(48*A*cos(d 
*x + c)^4 + 56*A*cos(d*x + c)^3 + 2*(35*A + 48*C)*cos(d*x + c)^2 + 3*(35*A 
 + 48*C)*cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c 
))/(d*cos(d*x + c) + d), -1/192*(3*((35*A + 48*C)*cos(d*x + c) + 35*A + 48 
*C)*sqrt(a)*arctan(sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(s 
qrt(a)*sin(d*x + c))) - (48*A*cos(d*x + c)^4 + 56*A*cos(d*x + c)^3 + 2*(35 
*A + 48*C)*cos(d*x + c)^2 + 3*(35*A + 48*C)*cos(d*x + c))*sqrt((a*cos(d*x 
+ c) + a)/cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c) + d)]
 
3.2.63.6 Sympy [F(-1)]

Timed out. \[ \int \cos ^4(c+d x) \sqrt {a+a \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \, dx=\text {Timed out} \]

input
integrate(cos(d*x+c)**4*(A+C*sec(d*x+c)**2)*(a+a*sec(d*x+c))**(1/2),x)
 
output
Timed out
 
3.2.63.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 7699 vs. \(2 (172) = 344\).

Time = 0.74 (sec) , antiderivative size = 7699, normalized size of antiderivative = 39.28 \[ \int \cos ^4(c+d x) \sqrt {a+a \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \, dx=\text {Too large to display} \]

input
integrate(cos(d*x+c)^4*(A+C*sec(d*x+c)^2)*(a+a*sec(d*x+c))^(1/2),x, algori 
thm="maxima")
 
output
1/768*(48*(2*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) 
 + 1)^(1/4)*((cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(2*d 
*x + 2*c) - (cos(2*d*x + 2*c) - 2)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2 
*d*x + 2*c))) + sin(2*d*x + 2*c))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2* 
d*x + 2*c) + 1)) + ((cos(2*d*x + 2*c) - 2)*cos(1/2*arctan2(sin(2*d*x + 2*c 
), cos(2*d*x + 2*c))) + sin(2*d*x + 2*c)*sin(1/2*arctan2(sin(2*d*x + 2*c), 
 cos(2*d*x + 2*c))) - cos(2*d*x + 2*c) + 2)*sin(1/2*arctan2(sin(2*d*x + 2* 
c), cos(2*d*x + 2*c) + 1)))*sqrt(a) + 3*sqrt(a)*(arctan2((cos(2*d*x + 2*c) 
^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(s 
in(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos( 
2*d*x + 2*c) + 1)) - cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 
1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))), (cos(2*d*x + 2* 
c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2 
(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*cos(1/2*arctan2(sin(2*d*x + 2*c) 
, cos(2*d*x + 2*c))) + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) 
+ 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))) + 1) - arctan2 
((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)* 
(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(1/2*arctan2(sin( 
2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - cos(1/2*arctan2(sin(2*d*x + 2*c), c 
os(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c...
 
3.2.63.8 Giac [F]

\[ \int \cos ^4(c+d x) \sqrt {a+a \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + A\right )} \sqrt {a \sec \left (d x + c\right ) + a} \cos \left (d x + c\right )^{4} \,d x } \]

input
integrate(cos(d*x+c)^4*(A+C*sec(d*x+c)^2)*(a+a*sec(d*x+c))^(1/2),x, algori 
thm="giac")
 
output
sage0*x
 
3.2.63.9 Mupad [F(-1)]

Timed out. \[ \int \cos ^4(c+d x) \sqrt {a+a \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \, dx=\int {\cos \left (c+d\,x\right )}^4\,\left (A+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )\,\sqrt {a+\frac {a}{\cos \left (c+d\,x\right )}} \,d x \]

input
int(cos(c + d*x)^4*(A + C/cos(c + d*x)^2)*(a + a/cos(c + d*x))^(1/2),x)
 
output
int(cos(c + d*x)^4*(A + C/cos(c + d*x)^2)*(a + a/cos(c + d*x))^(1/2), x)